

Natural Assets along the Wolastoq / Saint John River

Simon J. Mitchell, VP Resilient Habitats, WWF Canada


Megan de Graaf, Acadian Forest Program Director, Community Forests International

March 2021

CONTENT

Introductions Natural Assets/Infrastructure Florenceville-Bristol case study Cambridge-Narrows case study Closing remarks / Questions

SPECIES PROTECTED UNDER SARA

28%

between 2002 - 2014

DUAL CRISIS OF CLIMATE CHANGE AND BIODIVERISTY LOSS

What does climate change mean for the Wolastoq-SJR?

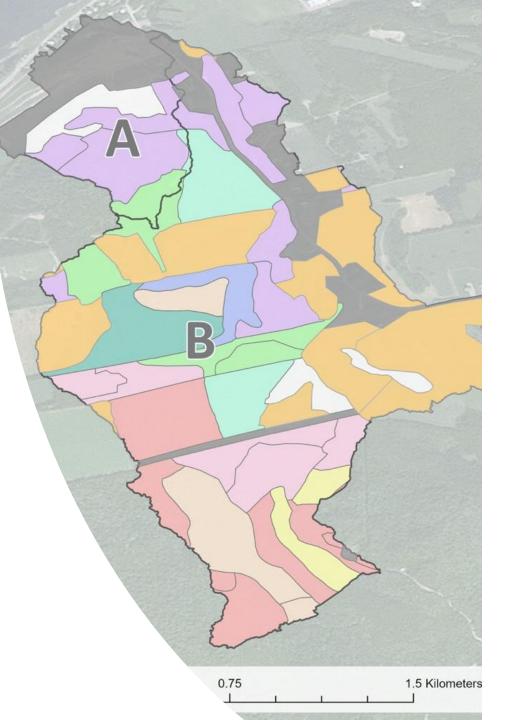
The changing frequency of temperature and precipitation extremes is expected to:

- Increased occurrence and risk of ice-jams from increasing freeze-thaw events.
- Increased risk of flooding from increasing precipitation.
- Increased risk of water contamination and habitat degradation from overland flooding that creates sediment and nutrient overloading of the SJR system.
- Increase risk of BG algal blooms from hotter/drier weather in summer.

All climate impacts are experienced through freshwater

Florenceville-Bristol Municipal Natural Assets project components

- Community Engagement Session
- Condition assessment
- Beneficiary analysis
- GIS mapping
- Flows modelling and analysis
- Quantification of service level from natural asset
- Develop operation and management approach based on existing conditions, risk and desired trajectory
- Reporting and next steps



Study site

A riverside subdivision that is gradually expanding leading to issues with roads and culverts down slope.

And, sediment being deposited into the Saint John River.

Condition assessment: Understand current condition of the natural asset hillside, forested area, riparian corridor, development and their influences.

Beneficiary considerations

Beneficiary considerations explore the assets, beneficiaries, drivers of demand and associated indicators

Asset component	Benefit	Beneficiary
Water quality improvement	Taxpayers, river users, river-based businesses, stakeholders valuing clean water	Down river water users, biodiversity / aquatic species. (Sensitivity of water users downstream of natural asset to increases in sediment loads or water quality impairment), current biological state of stream / river waters
Water quantity improvement (decrease) / flood mitigation	Taxpayers, river users, river-based businesses, Public Works, Emergency Services (those responding to road detours as a result of washouts)	Contribution to water levels, presence of infrastructure and landowners (incl. homes) to uncontrolled flows and their impact
Soil retention / erosion control	Subdivision residents and the broader community and businesses, land users	Green space, retention of built infrastructure, impact on landowners in areas prone to flooding
Infrastructure retention (culverts, ditches, roadways, etc.)	Tax payers, Municipal / Provincial budgets, residents, businesses and others impacted by infrastructure damage	Retention of built infrastructure, no disruption to service provision / access

Scenarios

Scenario 1 examined the flooding that could occur in the forested region as it currently exists.

Scenario 2 examined the flooding that could occur if the predominantly forested land changed to agricultural land.

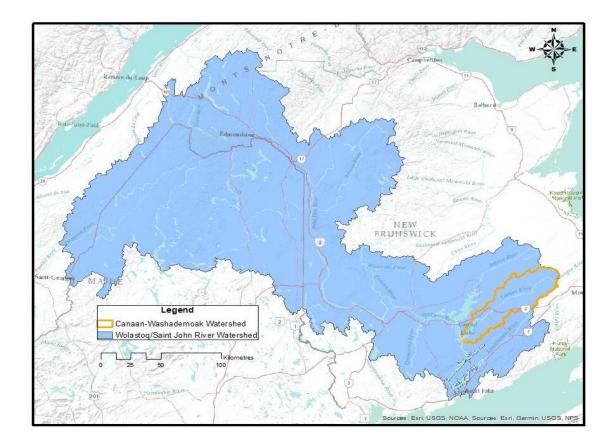
Both scenarios modeled results from three increasingly intense storm conditions: a 1-in-5-year storm, a 1-in-100-year storm, and a 1-in-100-year + 20% storm. This increased intensity takes climate change into consideration.

INCREASE (%) IN PEAK FLOW RATES BETWEEN SCENARIOS BY STORM							
Storm	Peak Flow (m³/s)		% Increase				
	Scenario 1	Scenario 2	% mcrease				
1:5 Year	1.85	3.59	94				
1:100 Year	5.23	8.64	65				
1:100 Year + 20%	7.49	11.88	59				

In Florenceville-Bristol, forests provide stormwater management services worth \$3.5 million – a figure that increases as storms become more frequent and intense

 10 SCHOOL LANE
 SACKVILLE, N.B.
 E4L 3J9

 C H A R I T Y
 # 8 4 1 4 5 9 4 2 3 R R 0 0 0 1

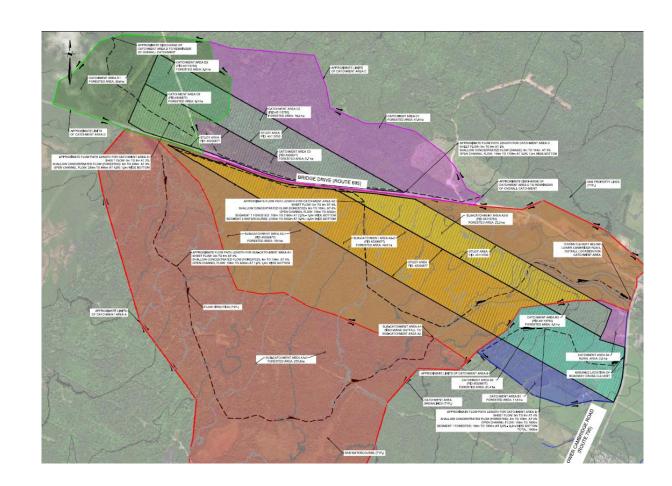

Megan de Graaf

Director Acadian Forest Program

"Protect and restore Earth's climate by enabling communities and forests to thrive together."

- Role of deforestation in flooding is hotly debated (but see Dr. Bourque's most recent research)
- Natural infrastructure vs. built (grey) infrastructure: effective AND cost-effective
- Our question: what is the flood abatement role of intact old forest?

COMMUNITY FORESTS INTERNATIONAL



Hydrologic Analysis: **Scenario 1**. Existing Condition (forest) **Scenario 2**. New Condition (field/clearcut)

Peak flows were evaluated for each of the scenarios which included

- 1 in 5 Year
- 1 in 50 Year
- 1 in 100 Year
- **1 in 100 Year + 20%** and 1 in 100 Year + 40% storm events.

For the 1:100 year storm event where climate change increases rainfall intensity by 20%, built infrastructure in the form of catchment ponds would need to exceed **25,900 cubic meters** to replace the flood mitigation role of the forest in the study area alone.

Taking this one step further, a cost analysis revealed that 4 catchment ponds would be necessary to capture this amount of water across this landscape, and their construction would cost a total of **\$1,042, 526.76.**

Compare this to the value of the property and timber (as per the inventory we had done in 2019), which is **\$324,099.**

	Peak Flow (m3/s)		Assumed	Peak Depth	Approximate
Catchment Area	Scenario 1 Pre-condition	Scenario 2 Post Condition	Length x Width (m x m)	(m)	Volume (m3)
A	37.92	40.65	90 x 90	1.97	16000
В	4.43	5.28	35 x 35	2.03	2500
С	9.36	10.44	35 x 35	2.12	2600
D	4.04	6.62	45 x 45	2.34	4800

Simon J. Mitchell

smitchell@wwfcanada.org (506) 238-4429 Megan de Graaf

megan@forestsinternational.org (506) 536-3738

